ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8$ m/s

Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$

Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Universal gravitational

constant,

Acceleration due to gravity $\frac{1}{2} = \frac{10.8 \text{ m}}{2}$

at Earth's surface,

g	= 9.8	m/s			
***	•	~	-		

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	$^{\circ}\mathrm{C}$
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES					
Factor	Prefix	Symbol			
10 ¹²	tera	T			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10^{-2}	centi	c			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	p			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

MECHANICS

v_x	$= v_{x0} -$	$+ a_x t$	а		=	acceleration
-------	--------------	-----------	---	--	---	--------------

$$A = \text{amplitude}$$

$$A = \text{distance}$$

$$A = \text{distance}$$

$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$
 $d = \text{distance}$
 $E = \text{energy}$

$$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$$
 $f = \text{frequency}$
 $F = \text{force}$

$$K = \frac{\sum Y}{m} = \frac{Y}{m}$$
 $K = \text{kinetic energy}$
 $K = \text{spring constant}$

$$|\vec{F}_f| \le \mu |\vec{F}_n|$$
 $L = \text{angular momentum}$

$$\ell = \lim_{n \to \infty} \ell = \text{length}$$

$$a_c = \frac{v^2}{r}$$
 $m = \text{mass}$
 $P = \text{power}$

$$\vec{p} = m\vec{v}$$
 $p = momentum$ $r = radius or separation$

$$\Delta \vec{p} = \vec{F} \Delta t$$
 $T = \text{period}$ $t = \text{time}$

$$K = \frac{1}{2}mv^2$$
 $U = \text{potential energy}$ $V = \text{volume}$

$$V = \frac{1}{2}mv^2$$
 $V = \text{volume}$ $V = \text{speed}$

$$\Delta E = W = F_{\parallel} d = F d \cos \theta$$
 $W = \text{work done on a system}$

$$P = \frac{\Delta E}{\Delta t}$$
 $x = position$ $y = height$

$$\Delta t$$
 α = angular acceleration

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$
 $\mu = \text{coefficient of friction}$

$$\theta = \text{angle}$$
 $\theta = \text{density}$

$$\omega = \omega_0 + \alpha t$$
 $\rho = \text{density}$
 $\tau = \text{torque}$

$$x = A\cos(2\pi ft)$$
 $\omega = \text{angular speed}$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I} \qquad \Delta U_g = mg \, \Delta y$$

$$\tau = r_{\perp}F = rF\sin\theta \qquad \qquad 2\pi \qquad 1$$

$$\tau = r_{\perp}F = rF \sin \theta$$

$$L = I\omega$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\Delta L = \tau \, \Delta t \qquad \qquad T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$K = \frac{1}{2}I\omega^2$$

$$T = 2\pi \sqrt{\frac{\ell}{\ell}}$$

$$K = \frac{1}{2}I\omega^2 \qquad T_p = 2\pi\sqrt{\frac{\ell}{g}}$$

$$\left| \vec{F}_g \right| = G \frac{m_1 m_2}{r^2}$$

$$U_s = \frac{1}{2} k x^2$$

$$\rho = \frac{m}{V}$$

$$\vec{g} = \frac{\vec{F}_g}{m}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY

$$\left| \vec{F}_E \right| = k \left| \frac{q_1 q_2}{r^2} \right|$$
 $A = \text{area}$ $F = \text{force}$ $I = \text{current}$

$$I = \frac{\Delta q}{\Delta t}$$
 $\ell = \text{length}$ $\ell = \text{power}$ $\ell = \text{power}$

$$R = \frac{1}{A}$$
 $R = \text{resistance}$
 AV $r = \text{separation}$

$$I = \frac{\Delta V}{R} \qquad \qquad t = \text{time}$$

$$P = I \Delta V$$
 $V = \text{electric potential}$ $\rho = \text{resistivity}$

$$R_s = \sum_i R_i$$

$$\frac{1}{R_n} = \sum_{i} \frac{1}{R_i}$$

WAVES

$$\lambda = \frac{v}{f}$$

$$f = \text{frequency}$$

$$v = \text{speed}$$

$$\lambda = \text{wavelength}$$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference

$$V = \text{volume}$$
Triangle $S = \text{surface area}$

$$A = \frac{1}{2}bh$$

$$b = base$$

$$b = base$$

$$h = \text{height}$$

$$\ell = \text{length}$$

$$w = \text{width}$$

$$A = \pi r^2$$
 $w = \text{width}$
 $C = 2\pi r$ $r = \text{radius}$

$$V = \ell w h$$

Cylinder
$$V = \pi r^2 \ell$$

$$V = \pi r^2 \ell$$
$$S = 2\pi r \ell + 2\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$
$$S = 4\pi r^2$$

Sphere
$$V = \frac{4}{3}\pi r^3$$

Right triangle

 $\sin\theta = \frac{a}{c}$

 $\cos\theta = \frac{b}{a}$

 $\tan \theta = \frac{a}{b}$

 $c^2 = a^2 + b^2$

$$\frac{c}{\theta}$$
 90° α